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The application of genome-wide expression analysis to a large-
scale, multicentered program in critically ill patients poses a num-
ber of theoretical and technical challenges. We describe here an
analytical and organizational approach to a systematic evaluation
of the variance associated with genome-wide expression analysis
specifically tailored to study human disease. We analyzed sources
of variance in genome-wide expression analyses performed with
commercial oligonucleotide arrays. In addition, variance in gene
expression in human blood leukocytes caused by repeated sam-
pling in the same subject, among different healthy subjects, among
different leukocyte subpopulations, and the effect of traumatic
injury, were also explored. We report that analytical variance
caused by sample processing was acceptably small. Blood leuko-
cyte gene expression in the same individual over a 24-h period was
remarkably constant. In contrast, genome-wide expression varied
significantly among different subjects and leukocyte subpopula-
tions. Expectedly, traumatic injury induced dramatic changes in
apparent gene expression that were greater in magnitude than the
analytical noise and interindividual variance. We demonstrate that
the development of a nation-wide program for gene expression
analysis with careful attention to analytical details can reduce the
variance in the clinical setting to a level where patterns of gene
expression are informative among different healthy human sub-
jects, and can be studied with confidence in human disease.
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Our understanding of the biological basis for most complex
human diseases remains incomplete. In an attempt to

elucidate underlying pathophysiologies, the scientific and med-
ical communities have often used reductionist approaches to
recapitulate specific components of the biological process by
employing model organisms like rodents or cell lines. Another
approach has been to focus on an individual gene, signaling
pathway, or mechanism in selected patient populations. Al-
though these approaches have been very successful in the past,
they often fail to provide critical information regarding complex
interactions and networks during disease development. To im-
prove our understanding of the integrated response to human
disease, high-throughput genomics technologies have been re-
cently developed, enabling the simultaneous determination of a
large number of analytes from clinical samples (1, 2). For
example, high-throughput technologies to survey the entire
human transcriptome have been recently used to classify histo-
logically similar tumors based on genome-wide expression pat-
terns, as well as predicting clinical response to antineoplastic
therapies (3–6).

Associated with these technologies are a number of theoretical
and technical challenges that have delayed their widespread
implementation in the clinical setting (1). These include (i) the

requirement for a consortium of scientists and clinicians with
diverse skill sets to develop an effective methodological strategy,
(ii) the accumulation of sufficient technical expertise to generate
high-quality, large-scale, biochemical, genetic, and physiological
data, and, finally, (iii) the development of an effective mecha-
nism and tools to properly store, disseminate, and analyze the
data that will be generated from these large-scale scientific
projects.

Freely available online through the PNAS open access option.

Data deposition: The array data reported in this paper have been deposited in the Gene
Expression Omnibus database (accession nos. GSM42732–GSM42819; the entire series is
accessible as GSE2328).
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As a prelude to the National Institutes of Health ‘‘Road Map’’
for translational medicine (7), the National Institute of General
Medical Sciences has supported a large-scale collaborative,
clinical research program with the purpose of applying recently
developed, high-throughput genomic and proteomic approaches
to trauma and inflammation research. The overarching vision
behind this program was to empower clinical scientists, biochem-
ists, immunologists, and bioinformaticians to develop an orga-
nizational framework and appropriate infrastructure to intro-
duce high-throughput, genome-wide expression technologies to
a multicentered, hospital-based study. At the initiation of this
program, considerable time and effort were spent establishing a
network of communication among highly skilled individuals who
had little experience at transdisciplinary, multicentered studies.
The effective communication and exchange of expertise among
all of the members of the program became the cornerstone for
the successful implementation of these high-throughput genomic
technologies in the clinical setting.

This report focuses on the programmatic effort to identify and
develop strategies to minimize sources of variation in gene
expression patterns from whole blood, leukocyte subpopula-
tions, and skeletal muscle by using DNA oligonucleotide mi-
croarrays. The goal of these studies was to establish and imple-
ment standardized protocols that could be used in a clinical
setting and to quantify their analytical variance. At the same
time, the magnitude of analytical variance was determined in the
context of interindividual variance in health and disease in an
effort to ascertain the likelihood of obtaining meaningful ex-
pression data from investigations in hospitalized patients with
severe trauma.

Materials and Methods
Organizational Structure. The experimental protocols were devel-
oped by a core of investigators comprising a total of eight
participating institutions, and were approved by a programmatic
Steering Committee. Studies in healthy subjects were conducted
at four institutions: Washington University School of Medicine
(St. Louis), University of Florida College of Medicine (Gaines-
ville), University of Rochester School of Medicine (Rochester,
NY), and the Robert Wood Johnson Medical School/University
of Medicine and Dentistry of New Jersey (New Brunswick).
Studies in severely traumatized patients were conducted at
Harborview Medical Center (University of Washington, Seattle)
and University of Rochester School of Medicine. Expression
analyses were performed at the Stanford Genome Technology
Center (Palo Alto, CA), University of Florida College of Med-
icine, and Washington University School of Medicine. Data were
analyzed by an analytical core based at Massachusetts General
Hospital (Cambridge), but also including Stanford Genome
Technology Center and the University of Florida College of
Medicine.

Patient Recruitment. Permission was obtained from healthy sub-
jects and hospitalized patients to collect venous blood and/or
waste skeletal muscle tissue in accordance with protocols ap-
proved by the Institutional Review Boards of the participating
institutions. Obtaining informed consent early in the course of
critical illness resulting from injury is a complex issue that was
addressed first at the local level, then at the Program level. A
complete description is available upon request. Blood or tissues
were collected from a total of 23 healthy human subjects and 251
severely traumatized or burned patients (data from 34 of these
subjects are reported herein). Universal Human Reference RNA
(Stratagene) was used for the variance analyses of cRNA target
synthesis and hybridization.

Blood and Tissue Processing. Blood and tissue samples were pro-
cessed immediately at the clinical site and then frozen and

shipped to the sample coordination site at the University of
Florida. From there, depending on the experiment, frozen
samples were either processed locally or sent to Stanford for
processing of RNA and subsequent hybridization to either the
U133A or U133 Plus GeneChip. Detailed descriptions for all of
these protocols and specific laboratory methodologies can be
obtained from published reports (8) and Supporting Text, which
is published as supporting information on the PNAS web site;
further details are available upon request.

Statistical Analyses. The statistical analyses are described in
complete detail in Supporting Text. GeneChip expression signal
normalization was performed with DNA Chip Analyzer (dChip
v1.3, www.dchip.org) by using the perfect match algorithms.
Probe sets whose apparent expression differed among groups
were analyzed by Significance Analysis of Microarrays (SAM),
using a false discovery rate of �0.001 based on 1,000 permuta-
tions of the data set (9).

Pearson’s product moment correlation among all of the ex-
pression values for pairs of microarrays was used as a measure
of variance within and between groups of microarrays. For
selected groups of microarrays, the coefficient of variation for
each probe set was computed as an additional measure of
variance.

Results
Structural Organization of the Program. The complex and diverse
nature of the program required the development of individual
clinical, analytical, and administrative cores, which were com-
prised of clinicians, biochemists, immunologists, statisticians,
and administrators. Each core had the direct responsibility to
establish guidelines for the conduct of the clinical study, adher-
ence to institutional responsibilities for clinical research, and
development of analytical procedures. These issues included
compliance with institutional and federal requirements for pa-
tient confidentiality, adequate training of the nursing and/or
research staff in new technologies, sample transport, processing,
and analysis of clinical materials at centralized analytical sites,
and data transfer to a central data management site. Most
importantly, decisions in each core were made by consensus,
reduced to standard operating procedures, distributed among
the participants, approved by a steering committee, and posted
on the program’s web site for reference (www.gluegrant.org).
Communication among the participants was achieved through
multiple approaches, consisting of weekly conference calls and,
most importantly, quarterly face-to-face meetings. The latter
provided a venue free from distractions and emphasized work
product based on core-specific, quarterly deliverables.

Variance Caused by Microarray Platform and Target Generation. A
significant limitation to the performance of genome-wide ex-
pression analysis in clinical studies is the quantity of blood or
tissue available. Analytical methods to both amplify and label the
RNA are required for hybridization to microarray platforms. We
first determined the variance in apparent gene expression caused
by the amplification, labeling and hybridization procedures
required for the GeneChip platform (Standard Operating Pro-
cedure no. G007, see Supporting Text). A single sample of
Universal Human Reference RNA underwent four simulta-
neous cRNA synthesis reactions using an initial 4 �g per
reaction, and hybridization to separate U133A GeneChips. An
additional single biotinylated cRNA target was also hybridized
independently to four U133A GeneChips. As shown in Table 1,
there was a high degree of correlation among replicates at both
the level of target hybridization and generation of the cRNA
target, with Pearson correlation coefficients of 0.997. When the
concordance was examined by using the Universal Human
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Reference RNA as the starting material for the cRNA synthesis,
the mean correlation coefficient was 0.996.

Variance Caused by Methods for Tissue Isolation. To evaluate the
variance introduced by the method of isolating total cellular
RNA from whole blood and a solid tissue in hospitalized
patients, well accepted protocols were compared. In this case,
blood was divided into three separate aliquots and processed
according to the analytical techniques described in Materials and
Methods. Not surprisingly, the concordance in apparent gene
expression among subjects varied depending on the RNA iso-
lation method (Table 2). Even more important was the lack of
concordance in gene expression between PAXgene-derived sam-
ples and RNA samples obtained from the two leukocyte isola-
tion protocols in the same subject.

When different protocols were compared for immediate tissue

preservation and isolation of RNA from human skeletal muscle,
the results were very different from the blood isolation proto-
cols. In this case, the concordance in gene expression from the
same human muscle sample preserved by snap-freezing, immer-
sion in ice-cold 70% ethanol, or immersion in RNAlater was
markedly higher than the concordance in gene expression in
muscle samples obtained from different burn subjects by using
the same tissue preservation and RNA isolation protocol. This
finding is not surprising because the samples were obtained from
different subjects whose burn injuries and clinical course varied
dramatically.

Variance Caused by Time, Cell Type, and Genotype in Healthy Subjects.
Variance in apparent blood leukocyte gene expression was also
examined in the same healthy subject over time, in different
healthy subjects, and in different isolated enriched leukocyte
populations from the same healthy subject. Four healthy subjects
were admitted to the General Clinical Research Center at
Robert Wood Johnson Medical School and, after an overnight
fast, were placed in bed; blood was sampled six times over a 24 h
period (0, 2, 4, 6, 9, and 24 h) (10). Most surprising was the high
concordance in gene expression obtained from the same subject
over the 24-h sampling period. As shown in Table 1 and Fig. 1,
mean concordance at the probe set level was 0.991, very similar
to the concordance seen in gene expression from a single Human
Universal Reference RNA processed four times. This is best
visualized in Table 3, where the mean coefficient of variation for
RNA abundance across the 22,281 probe sets was 10%, and 90%
of the probe sets had a coefficient of variation of �14%.

In contrast, the variance in apparent gene expression among
17 different healthy subjects was considerably greater. These
samples were obtained from individuals at three different insti-

Table 1. Summary of concordance in gene expression

Pearson correlation
coefficient

From cRNA hybridization (n � 4) 0.997 � 0.0011
From RNA starting material (n � 4) 0.996 � 0.0009
Leukocyte gene expression from same

healthy subject over 24 h (n � 4 subjects,
four to six time points per subject)

0.991 � 0.002

Leukocyte gene expression from individual
healthy subjects (n � 17)

0.952 � 0.0203

Individual leukocyte populations in different
healthy subjects (n � 5)

T cells 0.977 � 0.0059
Monocytes 0.970 � 0.0106
Total WBCs 0.968 � 0.0122

Comparing different cell types from same
healthy subjects (n � 5)

Monocytes vs. T cells 0.879 � 0.007
T cells vs. total WBCs 0.899 � 0.011
Monocytes vs. total WBCs 0.942 � 0.009

Leukocyte gene expression from individual
trauma patients (n � 14)

0.919 � 0.0349

WBC, white blood cell.

Table 2. Concordance in gene expression due to sample
preparation

Preparations
Pearson correlation

coefficient

Human blood preparations
Between subjects

PAXgene 0.934 � 0.0242
Lysis 0.959 � 0.0150
Buffy coat 0.906 � 0.0965

Between isolation methods
PAXgene vs. lysis 0.891 � 0.041
PAXgene vs. Buffy coat 0.908 � 0.046
Buffy coat vs. lysis 0.955 � 0.061

Human muscle preparations
Between subjects (range)

Snap frozen 0.873 (0.824–0.942)
70% ethanol 0.878 (0.833–0.951)
RNAlater 0.888 (0.855–0.948)

Between isolation methods
RNAlater vs. snap frozen 0.988 � 0.005
RNAlater vs. 70% ethanol 0.991 � 0.001
Snap frozen vs. 70% ethanol 0.982 � 0.009

Fig. 1. Variation in gene expression from healthy subjects and trauma
patients. Blood leukocytes were obtained from four healthy subjects repeat-
edly over a 24-h study period, from 17 different healthy subjects, and from 14
patients after severe trauma. The coefficients of variation were determined at
the probe set level and were plotted as a distribution curve.

Table 3. Inter- and intraindividual variance

Coefficient of
variation

Within healthy
subjects*
(n � 4)

Among healthy
subjects
(n � 17)

Among trauma
patients
(n � 14)

Mean � SD 0.0965 � 0.0482 0.1803 � 0.1043 0.1998 � 0.1267
Median 0.0881 0.1588 0.1621
90% 0.1390 0.2720 0.3450
10% 0.0586 0.1001 0.0972

The means and percentiles for the variation in gene expression among the
three groups of subjects in Fig. 1.
*Four to six replicates per subject.
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tutions, and blood sampling was uncontrolled for time of day,
physical activity, or prior nutritional intake. Mean concordance
at the probe set level was 0.955, less than the 0.991 seen in the
same subject over 24 h. In addition, in the 17 healthy subjects, the
mean coefficient of variation in gene expression for each probe
set was 18.0% (approximately twice that seen in the same subject
over time), and 90% of the probe sets had a coefficient of
variation of 27% or less.

To examine the variance in apparent gene expression observed
in leukocyte subpopulations, blood was obtained from a subset
of five healthy subjects, and gene expression was determined in
the total leukocyte population and enriched T cell and monocyte
subpopulations. Fig. 2 summarizes the distribution of leukocyte
subpopulations in the total leukocyte and in the enriched T cell
and monocyte populations from these five healthy subjects. As
shown in Table 1, the concordance in gene expression among
enriched T cells and monocytes from the five healthy subjects
was as good or better than the concordance in gene expression
from the total leukocyte population (r � 0.977 and 0.970 vs.
0.968). However, as shown in Table 1, and more graphically in
Fig. 3, the patterns in apparent gene expression among the total
leukocyte population and enriched T cells and monocytes were
dramatically different. The concordance between cell types
varied from 0.879 to 0.942 among the three cell types. Principal

component analysis (Fig. 3A) and hierarchical cluster analysis
(Fig. 3B) revealed the considerable differences in apparent gene
expression in the three leukocyte populations from the same
healthy subjects. Table 4, which is published as supporting
information on the PNAS web site, provides the lists of genes
whose apparent expression discriminates among total leuko-
cytes, monocytes, and T cells.

Variance Caused by Trauma. Gene expression profiles were also
examined in 14 trauma subjects. Their clinical characteristics are
provided in Table 5, which is published as supporting informa-
tion on the PNAS web site. The variation in apparent gene
expression in trauma patients was expectedly greater than the
variation seen in healthy subjects. Concordance rates were lower
at 0.919 vs. 0.952 (Table 1 and Fig. 4). However, concordance
does not emphasize the very different patterns of apparent gene
expression seen in the blood leukocytes from the trauma sub-
jects. Comparing patterns between healthy and traumatized
subjects reveals marked differences in apparent gene expression,
as visualized by principal component and hierarchical cluster
analyses (Fig. 4), allowing ready classification because of probe
sets showing increased or decreased relative RNA abundance.
Table 6, which is published as supporting information on the
PNAS web site, includes those probe sets whose apparent
expression was different between healthy subjects and trauma-
tized patients. Further details are available in Table 7, which is
published as supporting information on the PNAS web site.

Discussion
Conducting genome-wide expression analyses on blood and
tissue samples obtained from hospitalized patients required the
establishment of an infrastructure that not only supported the
successful implementation of these analytical technologies, but
also considered the constraints placed on clinical research in a
critical care setting, which included the limited quantities and
frequency of sample collection. Moreover, the dynamic nature of
the host response to injury required logistics and a level of
coordination not typical of previously reported multicentered
clinical studies (e.g., the time element of cancer is less demand-
ing). As a prerequisite for the application of genome-wide
expression analysis to a multicenter clinical study, we recognized
that the variation in apparent gene expression across the entire
genome would need to be estimated, and protocols would have
to be developed that were sufficiently sensitive, yet robust, when
applied to a clinical setting. Success in developing the infra-
structure for these multicenter studies was the direct result of
frequent, open communications between the clinical personnel

Fig. 2. Leukocyte populations in total white blood cells (WBCs) and T cell-
and monocyte-enriched populations. Whole blood obtained from five healthy
subjects was subjected to either total WBC isolation or T cell or monocyte
enrichment. The cell distribution was determined by flow cytometry using
labeled antibodies to the cell surface markers identified as described (16). The
total WBC preparation contained predominantly neutrophils (CD66b�), but
also 32% T cells and �8% monocytes. T cell enrichment yielded �95% CD2�,
CD3� cells, and monocyte enrichment yielded �90% CD14�, CD33� cells.

Fig. 3. Principal component and hierarchical cluster analyses performed on
leukocyte gene expression from buffy coat and T cell- and monocyte-enriched
populations. Blood was obtained from five healthy subjects, and leukocyte
populations were subjected to gene expression analysis with the U133A gene
chip, as described in Materials and Methods. Principal component (A) and
hierarchical cluster (B) analyses were performed on the hybridization signal
intensities of probe sets significant with a false discovery rate of 0.001.

Fig. 4. Principal component and hierarchical cluster analyses performed on
leukocyte gene expression from 14 trauma and 17 healthy subjects. Principal
component (A) and hierarchical cluster (B) analyses were performed on the
hybridization signal intensities of probe sets significant with a false discovery
rate of 0.001.
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collecting and processing the samples, and the analytical per-
sonnel providing the genomic analyses.

Before the formal initiation of any experimental protocol, the
clinical personnel were actively involved in acquiring the requi-
site skill sets and time commitment. Experimental protocols
were subsequently developed and refined by a limited number of
investigators with considerable expertise in clinical research,
with the goal being to make the protocols as feasible as possible
for a skilled but active clinical studies team. The protocols
subsequently underwent testing and refinement at the clinical
sites before their widespread implementation.

Choice of Platform. The GeneChip DNA microarray platform was
chosen for these studies because of several advantages, including
coverage of the entire human genome, access to probe se-
quences, probe redundancy (11 sequences per gene) to optimize
fidelity of signal-to-noise ratio, ready commercial availability
and quality control, available technical support, and relatively
low cost per gene. Previous studies by Tan et al. (11) and
Marshall (12) have emphasized the need to validate an analytical
platform before its widespread implementation, and the diffi-
culty in comparing expression data from different analytical
platforms.

As shown in Table 1, the variance associated with the gener-
ation of the labeled, complementary nucleotide target from a
standard human reference RNA, and its hybridization to the
microarray, was minimal. Our results are not consistent with the
earlier findings of Tan et al. (11), in that we attained near perfect
unity in concordance with a reference RNA sample analyzed in
replicate. Contrary to the conclusions of Tan et al. (11), and more
recently Marshall (12), these findings suggest that the method-
ologies used to generate the labeled complementary nucleotides
and the hybridization itself to the GeneChip platform introduced
only minimal variance to the analyses.

Variance Associated with Tissue Isolation and Stabilization. One of
the challenges associated with the use of genome-wide expres-
sion profiling in hospitalized patients has been the development
of methodologies that could be used at diverse clinical sites to
collect and store a high-quality RNA product (1, 13). We note
that the concordance in apparent gene expression with samples
using a whole blood RNA isolation protocol (PAXgene) were
markedly different from the gene expression profiles seen with
two leukocyte isolation protocols (Table 2). As we recently
reported, this difference is likely due to the contribution of RNA
from different cellular sources in the PAXgene preparations
when compared to leukocyte isolation protocols (8).

Regarding the isolation of total RNA from a solid tissue
specimen such as skeletal muscle, we compared three widely
used techniques: snap-freezing or immersion of the tissue in
ice-cold 70% ethanol or RNAlater. Concordance in gene ex-
pression in the same sample among the three techniques was
much greater than the concordance among different burn sub-
jects when a single analytical technique was used (Table 2). For
solid tissues, snap-freezing in liquid nitrogen is cumbersome and
poses potential health risks to staff collecting and transporting
the tissues. Thus, collection of samples in a less problematic
ice-cold 70% ethanol or RNAlater offers a number of practical
advantages. Regardless, these studies emphasize the require-
ment to standardize protocols not only for the actual analysis of
genome-wide expression, but also for the collection of tissues
and isolation of cellular RNA.

Variation in Gene Expression Among Healthy Subjects. Before initi-
ating the gene expression analyses in critically ill patients, we
assessed the intra- and intersubject variance in gene expression
among healthy subjects. Our studies showed a strong concor-
dance in gene expression in the same subjects when measured

repeatedly over a 24-h period. As shown in Fig. 1 and Tables 1
and 3, the level of concordance among the replicate analyses
from the same subject exceeded 0.99, and the average coefficient
of variation for �22,000 probe sets was only 9%. These results
are highly encouraging because they suggest that, in healthy
subjects committed to bed rest and a defined nutritional intake,
variations in blood leukocyte gene expression over a 24-h period
are remarkably small.

Variation in Gene Expression Among Leukocyte Subpopulations. One
of the limitations associated with gene expression in whole
blood or solid tissues is the heterogeneity of the cell population
and the potential diversity of the cell-specific response. To
explore the variance in apparent gene expression that is cell
specific, we developed protocols (Standard Operating Proto-
col no. G029) to isolate enriched (�90%) T cell and monocyte
populations based on negative selection techniques that are
applicable to a clinical setting (available in Supporting Text).
As shown in Figs. 2 and 3, the isolation of T cell and monocyte
populations from healthy subjects did not appear to introduce
any significant increase in the variance in gene expression. If
anything, the variance in gene expression among different
healthy subjects in the T cell and monocyte preparations was
equivalent to or less than that seen in the total leukocyte
preparations (Table 1). This finding would be expected if the
greatest source of variation in gene expression was the differ-
ing proportion of leukocyte subpopulations in the total leu-
kocyte preparation, as has been suggested by Whitney et al.
(14). As shown in Fig. 3 and Table 4, the patterns of gene
expression varied dramatically among T cell- and monocyte-
enriched and total leukocyte populations. These data imply
that distinct biological signals can be obtained not only from
the total leukocyte population, but also from specific cell
types, and isolation methodologies can be readily implemented
in hospitalized patient populations. Moreover, the findings are
consistent with the recent argument that a further understand-
ing of the biological basis for changes in genome-wide expres-
sion analysis will require the identification of gene expression
patterns from increasingly homogenous leukocyte subpopula-
tions (2).

Variation in Gene Expression in Trauma. Based on the identified
sources of variance, we applied these approaches to the first
subset of samples obtained from patients after significant
trauma, and asked whether the differences in gene expression in
whole blood leukocytes produced by traumatic injury would be
sufficiently great to distinguish injury specific patterns of gene
expression independent of intersubject variability. As shown in
Table 1, the intersubject variability in gene expression was
greater in the trauma subjects than it was in healthy subjects.
Such findings provide proof-of-principle in trauma patients, and
are in agreement with the studies of others who also observed
increased variance in gene expression in the blood of patients
with cancer and infections (14).

The question that inevitably arises is whether this increased
interindividual variability is sufficiently large in trauma patients
to negate the detection of any injury-associated changes in gene
expression. As shown in Fig. 4, the answer is unequivocally no.
As demonstrated by both principal component and hierarchical
cluster analysis, the patterns of RNA abundance from 14 se-
verely traumatized patients differed dramatically from the 17
healthy subjects. These genes included those whose apparent
expression is generally associated with blood neutrophil (MMP8,
neutrophil elastase 2, bactericidal/permability increasing pro-
tein), monocyte (IL-1 receptor type II, TLR5, SOCS3), and T
cell populations (CD28).
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Conclusions. The findings suggest that a thorough exploration of
the analytical and interindividual variations in genome-wide
expression is required to successfully apply gene expression
analyses to hospitalized patients. When these sources of varia-
tion are understood and controlled through the use of rigorously
defined protocols, a detailed genome-wide picture of the gene
expression response in human health and disease emerges.
Although each specific gene expression platform or protocol has
its advantages and limitations, gene expression profiling can
provide meaningful data when conducted using methodologies
that have been validated experimentally.

The major source of variance in apparent gene expression in
the blood compartment is due to interindividual variance and not
analytical noise. Our results reveal a notably high degree of
reproducibility both with the analytical processes and in the same
subject. The magnitude of the interindividual variance and the
changes in gene expression produced by traumatic injury were

somewhat greater than the variance associated with the sample
processing and analysis in the same subject. Collectively, these
findings and the infrastructure required to generate them pro-
vided the foundation necessary to explore differences in gene
expression caused by systemic inflammation, severe trauma, and
its complications by using the described platform and protocols
in large-scale multicentered trials (15).
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